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Abstract

This study aims to explore the use of the "Housing & Ocean Proximity" dataset
to predict key real estate market indicators. It focuses on forecasting housing
prices, crime rates, and identifying areas for potential urban revamping. By
integrating machine learning algorithms with comprehensive housing data,
including neighborhood demographics and economic conditions, the study
aims to offer actionable insights for investors, urban planners, and policy
makers, contributing to a more responsive and informed approach in the
dynamic real estate sector.
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Introduction

The rapid evolution of the real estate market, influenced by changing
demographics, economic factors, and urbanization, necessitates advanced
analytical approaches. This paper delves into the potential of machine
learning in transforming real estate analytics. Utilizing the "Housing & Ocean
Proximity" dataset, it aims to forecast housing prices, analyze crime rates, and
identify areas ripe for revamping. The study underscores the importance of
integrating data on house characteristics and neighborhood dynamics to
predict market trends. By harnessing predictive modeling, the research seeks



to offer valuable insights for stakeholders in real estate, urban planning, and
policy-making, highlighting the synergy between data science and real estate
market analysis.

Related Work:

Research Paper Citation

Paper 1: Endogenous Gentrification and Housing Price Dynamics

The paper discusses the variation in house price growth in different
neighborhoods within a city during overall housing booms. It introduces a
model linking these price movements and neighborhood gentrification
following citywide housing demand shocks. A key concept is the preference
for living near wealthier neighbors, leading to income-based segregation.
Higher-income residents move into adjacent poorer areas during demand
spikes, driving up prices and displacing original residents, a process termed
"endogenous gentrification." The paper provides empirical evidence
supporting this model, using various data sets and city-level demand shock
analysis.

Paper 2: Stratifying and predicting patterns of neighborhood change and
gentrification: An urban analytics approach

This paper tackles the complexity of identifying and differentiating
gentrification from other types of neighborhood changes in cities, using
London as a case study. It employs a novel urban analytics approach,
integrating diverse datasets on population, house prices, and development.
The study uses data reduction and classification methods, followed by
machine learning, to analyze and predict gentrification trends.

https://www.nber.org/system/files/working_papers/w16237/w16237.pdf
https://rgs-ibg.onlinelibrary.wiley.com/doi/pdf/10.1111/tran.12522


Data Definitions

It is a dataset that contains information about houses and their proximity to
the ocean. The dataset contains the following data features:

- Address: The address of the house.

- Latitude and longitude: The latitude and longitude of the house.

- Distance to ocean: The distance from the house to the ocean.

- Type of house: The type of house (e.g., single-family home, apartment,
condo).

- Number of bedrooms: The number of bedrooms in the house.

- Number of bathrooms: The number of bathrooms in the house.

- Square footage: The square footage of the house.

- Price: The price of the house.

The data comes from a variety of sources, such as public records, real estate
listings, and surveys.

Sources of housing ocean proximity data that I have got access to use, is from
my previous CMU Project for an HCII elective. It is varied and includes coastal
survey databases managed by governmental agencies, which provide
detailed information about properties near the ocean. Real estate websites
often feature filters and maps highlighting oceanfront or ocean-close
properties. GIS data from national and local sources can offer precise
mapping of property locations in relation to the coastline.

Baseline Performance

=== Run information ===



Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1
-W 1 -K "weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007"
-calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1
-num-decimal-places 4"
Relation: h_700-weka.filters.unsupervised.attribute.Remove-R11
Instances: 700
Attributes: 10

﻿longitude
latitude
housing_median_age
total_rooms
total_bedrooms
population
households
median_income
median_house_value
ocean_proximity

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

SMO

Kernel used:
Linear Kernel: K(x,y) = <x,y>

Classifier for classes: <1H OCEAN, INLAND

BinarySMO

Machine linear: showing attribute weights, not support vectors.

4.8876 * (normalized) ﻿longitude
+ 6.3828 * (normalized) latitude
+ -1.0439 * (normalized) housing_median_age
+ 2.4531 * (normalized) total_rooms
+ 0.3129 * (normalized) total_bedrooms
+ -1.4328 * (normalized) population
+ -0.5887 * (normalized) households
+ 1.1885 * (normalized) median_income
+ -4.9497 * (normalized) median_house_value
- 2.9463

Number of kernel evaluations: 23809 (69.374% cached)



Time taken to build model: 0.03 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 644 92 %
Incorrectly Classified Instances 56 8 %
Kappa statistic 0.8334
Mean absolute error 0.08
Root mean squared error 0.2828
Relative absolute error 16.4342 %
Root relative squared error 57.3328 %
Total Number of Instances 700

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area
PRC Area Class

0.966 0.143 0.903 0.966 0.933 0.836 0.911 0.892 <1H
OCEAN

0.857 0.034 0.947 0.857 0.900 0.836 0.911 0.871
INLAND
Weighted Avg. 0.920 0.098 0.922 0.920 0.919 0.836 0.911 0.884

=== Confusion Matrix ===

a b <-- classified as
393 14 | a = <1H OCEAN
42 251 | b = INLAND

The model was trained using a dataset with 700 instances and 10 attributes,
including geographical (longitude, latitude), demographic (population,
households), and economic (median income, median house value) factors,
among others. The goal is to classify instances into two classes: <1H OCEAN
and INLAND, probably based on geographical and other related attributes.



Key points from the output:

- SMO Algorithm: It utilized a linear kernel, indicated by the formula
showing attribute weights. Linear kernels are simpler and faster but
might be less powerful for complex datasets.

- Model Performance: The model achieved a high accuracy of 92% on
10-fold cross-validation. This suggests that it was generally effective in
classifying instances correctly.

- Evaluation Metrics: Various metrics like Kappa statistic, mean absolute
error, and others are provided. The Kappa statistic of 0.8334 indicates a
strong agreement between predicted and actual classifications. The
errors (mean absolute and root mean squared) are relatively low,
indicating good predictive power.

- Class-wise Performance: The detailed accuracy by class shows that the
model performed better in predicting <1H OCEAN compared to
INLAND, as seen in the TP (True Positive) Rate and Precision.

- Confusion Matrix: It gives a clear picture of the model's performance in
terms of false positives and false negatives. Most errors seem to be in
falsely classifying INLAND instances as <1H OCEAN.

___________________________________________________________________________________________________________________________________________________________________________________________

Error Analysis Process

The error analysis process involves several steps:

The confusion matrix gives a breakdown of the model's performance,
illustrating where it makes correct predictions and where it errs. It is evident
that the model has certain limitations, such as the potential misclassification
of the INLAND class.

Feature Impact Assessment : Using the 'Feature Weight' information to
determine which features have the most significant impact on predictions.



Features with very high weights may be dominating the model, potentially
leading to overfitting.

UsingMisclassification Review for examining specific instances of false
positives and false negatives to understand the context of these errors.

Problems Identified:

- Imbalance in Prediction - The model might be biased towards
predicting one class over the other, as indicated by the disparity in false
positives and false negatives.

- Feature Influence - Some features might be disproportionately
influencing the model's predictions, as indicated by the feature weight
analysis. Overfitting - Given the relatively high accuracy but lower
Kappa, the model might be overfitting the training data.

- Potential Improvements - To enhance the model, the following
strategies could be introduced: Feature Engineering - Enhance the
feature set by adding new features or transforming existing ones, like
creating interaction terms between latitude and longitude, or
categorizing continuous variables.

- Parameter Tuning - Use regularization more effectively to prevent
overfitting. This could be done by adjusting the regularization strength
(L1, L2) or using a dual approach. Class Weight Adjustment - If the
classes are imbalanced, adjust the class weights in the Logistic
Regression to make the model more sensitive to the minority class.
Cross-validation - Implement a more robust cross-validation scheme to
ensure the model generalizes well.

A structured evaluation experiment would involve the following steps:
Implement Changes - Introduce the improvements to the feature set and
model configuration. Retrain Model - Use the modified features and
parameters to retrain the Logistic Regression model. Validate Improvements -
Assess performance on a validation set or through cross-validation, focusing
on Kappa, Accuracy, and the confusion matrix. Compare Performance -
Evaluate whether changes have led to a statistical improvement over the
baseline model.



For parameter tuning, tools like CVParameterSelection would be employed,
focusing on numerical parameters like the regularization coefficient. The
chosen parameters would be those that maximize the cross-validated
performance metrics.

This approach to error analysis and model improvement is iterative and
data-driven, relying on a deep understanding of the model's current
limitations and the data's underlying patterns. By addressing the identified
issues and meticulously evaluating the impact of the changes, the model's
predictive power can be enhanced.

Image: A Screenshot of Feature Extraction using Column Features :Text
fields for extraction include demographics and location data. Feature
extraction plugins for columns and English parsing are selected, and the



interface lists numerical features with their unique value counts. The feature
table 'columns' is ready for analysis targeting the '<1H OCEAN' class, with
various performance metrics indicated but not their specific values.

Image: A Screenshot of Build Models using Logistic regression with Cross
Validation to check the performance of the dataset h_700.csv

Here, Cross-validation is set to 'Random' with an automatic fold assignment.
The Model Evaluation Metrics show an accuracy of 0.8957 and a kappa of
0.7836. The confusion matrix for the predictions has 381 correct for '<1H
OCEAN' and 246 correct for 'INLAND', with 26 and 47 instances misclassified,
respectively.



Image: A Screenshot of Build Models using Logistic regression with
Supplied Test Set to check the performance of the dataset h_300.csv

Logistic Regression with L2 Regularization is selected and evaluated on a test
set 'h_300.csv'. Metrics show an accuracy of 0.89 and a kappa of 0.7731. The
confusion matrix details predictions for two classes: '<1H OCEAN' (160 correct,
12 incorrect) and 'INLAND' (107 correct, 21 incorrect)

Conclusion: The cross-validations performance is poor than the Supplied
Test Performance.



Image: A Screenshot of Explore Results for error analysis showing
Average Cell Value, Horizontal Absolute Difference & Vertical Absolute
Difference

Description: Here, Evaluation metrics for the Logistic Regression model is
with a kappa of 0.773 and accuracy of 0.890. The confusion matrix indicates
160 correct predictions for '<1H OCEAN' and 107 for 'INLAND', with a few
misclassifications. The interface also presents detailed feature impact
analyses like average cell values and absolute differences, relating to features
such as latitude and median_house_value.



Image: A Screenshot of Explore Results for error analysis showing Feature
Weight

Description: Same as for last Image



Image: A Screenshot of Predict Labels for error analysis

Description: The model's evaluation metrics are listed as a kappa of 0.773 and
an accuracy of 0.890. The columns include various housing-related features,
and the actual versus predicted 'ocean_proximity' classifications. Rows of data
entries are visible, with some showing discrepancies between the actual and
predicted labels.



Images of Sheets : Screenshot of Prediction anomalies noticed in the
dataset h_3000.csv

Description: These screenshots depict the incorrectly classified. The ones
which were actually INLAND but were predicted as <1H OCEAN and the one
which were <1H OCEAN and predicted as INLAND.



Qualitative Description of Error Analysis on Housing Ocean
Proximity Data

The error analysis of the LightSide logistic regression model, tasked with
predicting 'ocean_proximity', reveals discernible patterns in its predictive
performance. The confusion matrices across the screenshots show varying
degrees of misclassification between the "<1H OCEAN" and "INLAND"
categories, particularly noted by the number of instances classified as "<1H
OCEAN" when they are actually "INLAND", and vice versa. For example, in one
confusion matrix, I observed nearly 160 true positives for "<1H OCEAN" but also
21 false negatives, where "<1H OCEAN" instances are mislabeled as "INLAND".
Conversely, there are 107 true positives for "INLAND" but 12 false negatives,
indicating a misclassification of "INLAND" instances as "<1H OCEAN".

The feature importance table offers additional insights, showcasing the
strong influence of features such as 'median_income', 'latitude', and
'longitude' on the predictions, which is to be expected given their direct
relevance to the concept of ocean proximity. However, the model's kappa
score, which is a more robust measure than accuracy since it accounts for
random chance, varies slightly but hovers around 0.773 in one instance,
suggesting moderate agreement. An accuracy of 0.89 implies that the model
correctly predicts 89% of the instances, but the kappa score indicates that the
model's predictive power is less than perfect when adjusted for chance.

The average cell values in the confusion matrices, like the 253710.7 for "<1H
OCEAN" and 142700 for "INLAND", along with the significant horizontal
absolute differences (e.g., 121464.842 for "<1H OCEAN"), highlight the disparity
in prediction errors between classes. These values suggest that for some
instances, the model's confidence in its predictions is not consistent across
the board.

Potential Solutions

In conclusion, the model demonstrates commendable performance; however,
error analysis reveals a distinct tendency towards specific misclassifications.
These could potentially be mitigated by rectifying inherent biases favoring
over-represented classes or by enhancing the decision boundaries
delineation among classes. Augmenting the model with a dataset that



ensures class balance, coupled with the incorporation of additional features
encapsulating geographic distribution nuances, is anticipated to diminish the
observed predictive inaccuracies and consequently elevate the kappa
statistic.

_____________________________________________________________________________
_

Tuning
Tuning methodology in Weka involves adjusting various parameters of
machine learning algorithms to optimize their performance and for this
process is critical in achieving more accurate and efficient models. Weka
provides tools and interfaces for tuning, such as Explorer and Experimenter,
allowing users to experiment with different parameter settings. The objective
is to find the best combination of parameters that yield the highest accuracy
or other performance metrics on given datasets.



Initial Sets Baseline Performance
A Sequential Minimal Optimization (SMO) classifier was used to build a
support vector machine model with a polynomial kernel. The model was
validated using 10-fold cross-validation on a dataset of 700 instances. The
classifier achieved a high classification accuracy, correctly predicting 92% of
the instances. The Kappa statistic of 0.8334 suggests a strong agreement
beyond chance. The detailed accuracy by class shows a true positive rate of
0.966 for the "<1H OCEAN" class and 0.857 for the "INLAND" class, indicating a
slightly better performance for the former. The confusion matrix shows that
the model had more difficulty distinguishing the "INLAND" class, with 42
instances of "<1H OCEAN" being misclassified as "INLAND". Overall, the
weighted average F-Measure of 0.919 and ROC area of 0.911 reflect a robust
model performance.

Performing Tuning Analysis: On four Training and Testing Set using StratefiedRemoveFolds filter

Train Set 1



Description: The SMO (Sequential Minimal Optimization) algorithm was
employed to train a support vector machine with a polynomial kernel. The
model was tested using 10-fold cross-validation on a dataset comprising 630
instances. It achieved a commendable classification accuracy, correctly
classifying 92.0635% of instances and incorrectly classifying 7.9365%. The
Kappa statistic of 0.8349 signifies a substantial agreement beyond chance.
When observing the detailed accuracy by class, the true positive rate (TP
Rate) for the "<1H OCEAN" class was 0.964, with a precision of 0.905, and for
the "INLAND" class, the TP Rate was 0.860, with a precision of 0.946. The
confusion matrix indicates that the model had a higher tendency to
misclassify the "INLAND" class as "<1H OCEAN" with 37 instances misclassified.
The F-Measure of 0.920 and ROC area of 0.912 further indicate a strong
predictive performance of the model. The number of kernel evaluations was
22354, with 72.311% cached, suggesting an efficient computational process.

Test Set 1



Description: The SMO (Sequential Minimal Optimization) algorithm was used
to create a support vector machine model with a polynomial kernel. The
model was evaluated on a test set of 63 instances, resulting in 93.6508%
correctly classified instances and 6.3492% incorrectly classified instances. The
Kappa statistic was 0.866, indicating a high level of agreement between the
predicted and observed classifications. The mean absolute error was low at
0.0635, and the root mean squared error was 0.252, which are both indicators
of the model's predictive accuracy.

The detailed accuracy by class shows that the model perfectly classified the
"<1H OCEAN" class with a true positive rate of 1.000 and precision of 0.902. The
"INLAND" class had a true positive rate of 0.846 and precision of 1.000,
reflecting high accuracy but slightly less than the "<1H OCEAN" class. The
weighted average for precision, recall, and F-Measure across classes was
0.943, 0.937, and 0.935, respectively, demonstrating overall strong
performance.

The confusion matrix further reveals the model's performance, with no
misclassifications for the "<1H OCEAN" class and only 4 instances of the
"INLAND" class being misclassified as "<1H OCEAN". The model's robustness is
also reflected in the high Matthews correlation coefficient (MCC) of 0.874 and
the receiver operating characteristic (ROC) area of 0.923, which suggests a
good balance between sensitivity and specificity. The relative absolute error
and root relative squared error are relatively high at 13.0666% and 51.1769%,
indicating areas where the model's performance could potentially be
improved.



TrainSet 2

Description: The SMO classifier with a polynomial kernel was applied to a
dataset, evaluated using 10-fold stratified cross-validation. The model has
performed well, correctly classifying 91.8871% of the 567 instances. The Kappa
statistic is 0.8322, which is a very good score indicating a high degree of
agreement.

For detailed class accuracy, the classifier achieved a true positive rate (TP
Rate) of 0.963 for the "<1H OCEAN" class and 0.860 for "INLAND". Precision for
the "<1H OCEAN" is slightly better than for "INLAND" (0.902 vs. 0.945), as is the
F-Measure (0.932 vs. 0.900). The Matthews Correlation Coefficient (MCC) of
0.835 for both classes suggests a high-quality classifier.

The ROC Area under the curve is 0.911 for both classes, indicating a high true
positive rate relative to the false positive rate. The PRC Area, which is the area
under the precision-recall curve, is 0.890 for "<1H OCEAN" and 0.873 for
"INLAND", which is also indicative of a good predictive performance.



The confusion matrix shows that the classifier has some difficulty
distinguishing between the two classes, with 24 instances of "<1H OCEAN"
being incorrectly classified as "INLAND" and 12 instances of "INLAND" being
incorrectly classified as "<1H OCEAN".

The model seems to be effective and efficient, taking only 0.01 seconds to
build, with a substantial portion of the kernel evaluations (67.937%) being
cached, which helps in speeding up the computations. The errors such as
mean absolute error (0.0811) and root mean squared error (0.2848) are
relatively low, which complements the high classification accuracy.

Test Set 2

Description: An SMO classifier using a polynomial kernel. The classifier was
tested on a set of 510 instances and it managed to correctly classify 91.9608%



of them. It incorrectly classified 8.0392% of the instances. The Kappa statistic
is 0.8354, which indicates a strong agreement between the classifier's
predictions and the actual labels.

The detailed accuracy by class shows a true positive rate (TP Rate) for the "<1H
OCEAN" class of 0.968 and for the "INLAND" class of 0.858. The precision is
higher for the "INLAND" class at 0.956 compared to 0.896 for "<1H OCEAN".
The F-Measure, which is a balance between precision and recall, is 0.931 for
"<1H OCEAN" and 0.904 for "INLAND". The Matthews Correlation Coefficient
(MCC) is 0.839 for both classes, suggesting that the classifier's predictions are
of high quality.

The ROC Area, representing the trade-off between the true positive rate and
the false positive rate, is 0.913 for both classes, which is considered excellent.
The PRC Area, or the area under the precision-recall curve, is 0.885 for "<1H
OCEAN" and slightly lower for "INLAND" at 0.883.

The confusion matrix provides insight into classification errors; the classifier
confused "<1H OCEAN" with "INLAND" 9 times, and "INLAND" with "<1H
OCEAN" 32 times.

The model shows high effectiveness in classifying instances with a
relatively balanced performance across both classes. The relative absolute
error at 16.3497% and the root relative squared error at 57.0475% are aspects
that could potentially be improved, but they do not overly detract from the
strong performance indicated by the other metrics.



Train Set 3

Description: The SMO classifier with a polynomial kernel function was
executed on a dataset, with the evaluation performed through 10-fold
cross-validation. The model correctly classified 91.5686% of the instances (467
out of 510), misclassifying 8.4314% (43 instances). The Kappa statistic is 0.8275,
indicating a very good agreement between the classifier predictions and the
actual data.

The detailed accuracy by class shows that the classifier has a true positive rate
(TP Rate) for the "<1H OCEAN" class of 0.961 and for the "INLAND" class of
0.858. Precision for "<1H OCEAN" is slightly lower at 0.895 compared to 0.946
for "INLAND". The F-Measure is 0.927 for "<1H OCEAN" and 0.900 for "INLAND".
The Matthews Correlation Coefficient (MCC) is 0.830, which is a high value
indicating a strong correlation between observed and predicted
classifications.



The ROC Area is 0.910 for both classes, which is considered to be excellent,
reflecting a model that provides a good trade-off between true positive and
false positive rates. The PRC Area, which is the precision-recall curve area, is
0.882 for "<1H OCEAN" and 0.875 for "INLAND", both of which are indicative of
a strong performance.

The confusion matrix shows that the classifier has more difficulty
distinguishing the "INLAND" class with 32 instances of "INLAND" being
incorrectly classified as "<1H OCEAN" and only 11 instances of "<1H OCEAN"
being incorrectly classified as "INLAND".

The results indicate a highly effective model, especially considering that the
model was built in 0.01 seconds and the time taken to test on the supplied
test set was only 0.08 seconds. The errors such as mean absolute error
(0.0843) and root mean squared error (0.2904) are relatively low, which, along
with the relative absolute error (17.082%) and root relative squared error
(58.4503%), suggests that there might be room for further optimization but
the current performance is already strong.

TestSet 3



Description: The SMO classifier with a polynomial kernel has been applied to
a dataset. The classifier was assessed on a test set consisting of 51 instances
and achieved an accuracy of 92.1569%, correctly classifying 47 instances and
incorrectly classifying 4. The Kappa statistic is 0.8404, suggesting a very good
agreement.

The classifier's detailed accuracy by class shows that it had a true positive rate
(TP Rate) of 0.964 for the "<1H OCEAN" class and 0.870 for the "INLAND" class.
Precision is high for both classes, at 0.900 for "<1H OCEAN" and 0.952 for
"INLAND". The F-Measure is also high, at 0.931 and 0.909 respectively,
indicating a balanced harmonic mean of precision and recall. The Matthews
Correlation Coefficient (MCC) stands at 0.843 for both classes, which is a high
value indicating strong predictive performance.

The ROC Area, which measures the trade-off between true positive rate and
false positive rate, is 0.917 for both classes, indicating a very good predictive
ability. The PRC Area, representing the precision-recall curve, is also high, at
0.887 for "<1H OCEAN" and 0.887 for "INLAND".

The confusion matrix provides additional detail on the classification
performance, revealing that the classifier did not misclassify any "<1H OCEAN"
instances as "INLAND" (0 instances) but misclassified 3 "INLAND" instances as
"<1H OCEAN". Therefore,

The model exhibits excellent performance with rapid processing times, as
indicated by the 0.01 seconds taken to build the model and the same time to
test it on the supplied test set. The mean absolute error is low at 0.0784, and
the root mean squared error is 0.2801, further indicating the model's accuracy.
However, the relative absolute error and root relative squared error are
somewhat high at 15.8624% and 56.2757%, respectively, which could suggest
areas for potential improvement in model calibration or feature selection.



Train Set 4

Description: The SMO classifier with a polynomial kernel shows that the
model was trained on a dataset with 459 instances and evaluated using
10-fold stratified cross-validation. The classifier achieved an accuracy of
91.7211%, correctly classifying 421 instances while incorrectly classifying 38. The
Kappa statistic is 0.831, indicating a strong level of agreement between the
classifier's predictions and the actual class labels.

The detailed accuracy by class shows a high true positive rate (TP Rate) for the
"<1H OCEAN" class at 0.968 and for the "INLAND" class at 0.854. The classifier
demonstrated high precision, particularly for the "INLAND" class at 0.957, and
a balanced F-Measure of 0.928 for "<1H OCEAN" and 0.903 for "INLAND". The
Matthews Correlation Coefficient (MCC) of 0.835 for both classes indicates a
high-quality prediction.

The area under the ROC curve (ROC Area) is 0.911 for both classes, suggesting
excellent discriminatory ability. The area under the precision-recall curve (PRC



Area) is also high at 0.880 for "<1H OCEAN" and 0.883 for "INLAND", indicating
a strong precision and recall balance.

The confusion matrix shows that the classifier predicted the "<1H OCEAN"
class with few errors (8 instances misclassified as "INLAND"), and more
instances of the "INLAND" class were misclassified as "<1H OCEAN" (30
instances). Therefore,

The performance metrics suggest that the classifier is highly effective, with
a rapid model build time of 0 seconds. The mean absolute error is small at
0.0828, and the root mean squared error at 0.2877 is low, which are indicative
of a model with accurate predictions. The relative absolute error and root
relative squared error are moderately high at 16.7316% and 57.8475%,
respectively, but these do not significantly detract from the overall strong
performance of the classifier.



Test Set 4

Description: An SMO (Sequential Minimal Optimization) model using a
polynomial kernel was applied to a dataset, producing an accuracy of
91.3043% on a test set of 46 instances. The Kappa statistic stands at 0.8189,
indicating a strong agreement between the predicted and actual
classifications. The model shows perfect recall for the "<1H OCEAN" class, with
a true positive rate (TP Rate) of 1.000, although with a false positive rate (FP
Rate) of 0.200, suggesting some instances of other classes were incorrectly
labeled as "<1H OCEAN". The precision for this class was 0.867, and the
F-Measure, which combines precision and recall, was 0.929. The model also
performed well for the "INLAND" class, with a TP Rate of 0.800 and a precision
of 1.000, indicating no instances were wrongly labeled as "INLAND". The
Matthews Correlation Coefficient (MCC) for both classes was 0.833, showing a
high-quality prediction power. The model's evaluation on the test set was
completed remarkably quickly, in just 0.01 seconds. Despite the high
accuracy, there is room for improvement, particularly in reducing the false
positive rate for the "<1H OCEAN" class, as reflected by the confusion matrix



where 4 "INLAND" instances were misclassified. The mean absolute error and
root mean squared error are low at 0.087 and 0.2949, respectively, but the
relative errors are moderately high, suggesting potential areas for model
refinement.

Final Conclusion about performing Tuning:

Arguments for tuning:
While tuning consistently nudged accuracy upwards across all train sets,
balanced performance across both classes, and slightly reduced
misclassifications, the overall improvements were small (around 0.2%
accuracy increase). This suggests that here tuning's value depends on the
importance of slight accuracy gains and model robustness, and whether the
potential benefits outweigh the additional time and resources required.

Arguments against tuning:
Tuning's impact on key performance metrics like Kappa, MCC, ROC area, and
F-Measure was barely noticeable across training sets. This suggests limited
benefit for achieving satisfactory performance, especially given the resource
demands of tuning. Also, while accuracy gains on training sets were observed,
their inconsistency and absence on some test sets raise concerns about
overfitting and generalization to unseen data. Ultimately, the time and
resources needed for tuning might not be justifiable if the baseline
performance is already acceptable.

Finally, whether tuning is ultimately worth the effort depends on a delicate
balance between your specific needs and available resources. In this case,
even slight accuracy gains hold significant value and therefore, tuning can
provide positive rewards in this case. However, if my baseline performance
already would have met expectations, then skipping the complexities of
tuning might be the wiser choice.
_____________________________________________________________________________

Final Evaluation of Final Test Set: The final evaluation of final test set of the
predictive analytics project’s in real estate, leveraging the "Housing & Ocean
Proximity" dataset, showed that tuning the Sequential Minimal Optimization
(SMO) classifier with a polynomial kernel resulted in slight but consistent
improvements in accuracy across training sets. While the performance



enhancements were modest, they were significant enough to suggest that
tuning is valuable when precision is crucial. However, the impact on key
metrics like Kappa, MCC, and ROC area was minimal, indicating limited
overall benefit for substantial performance improvement. The decision to
tune depends on the specific requirements and resources available,
suggesting that in cases where baseline performance is satisfactory, the
complex and resource-intensive tuning process might not be necessary.
Tuning can offer benefits when minor accuracy gains are critical, but its
necessity is less clear when baseline performance meets expectations.

Also, to generate a Final result, train and test were combined into a single
training set. The testing set was holdout, which had been other- wise unused.
Using SMO with C = 0:15, 300 of 1000 instances were correctly classied, for a
Kappa statistic of Using 1R, 300 instances were correctly clas-with accuracy
0.92, for a Kappa statistic of 0.7731.

My takeaway:

This work has offered a valuable learning experience for a student like me,
interested in the intersection of predictive analytics, real estate, and machine
learning. By diving into this analysis, I gained valuable insights into:

Unveiling Real Estate Trends with Machine Learning:
- Witnessed the power of machine learning to predict key indicators like

housing prices and crime rates, empowering investors, urban planners,
and policymakers.

- Understand the crucial role of integrating data on both house
characteristics and neighborhood dynamics for accurate market
forecasts, highlighting the importance of comprehensive data
collection and analysis in real estate decision-making.

In term of mastering Machine Learning Techniques:
- Gained hands-on experience with Weka & LightSide and explored their

suitability for specific classification and error analysis tasks within the
real estate domain.



- Developed a deeper understanding of model evaluation metrics like
Kappa statistic, confusion matrix, and feature weights, equipping you
with the tools to assess and refine machine learning models effectively.

Limitations:
- Recognized the limitations of real-world models, including potential

bias and data imbalances, fostering responsible data science practices
and ethical considerations.

The model showed promising performance in predicting ocean proximity, but
error analysis revealed areas for improvement, such as addressing class
imbalance and enhancing decision boundaries between classes. By
implementing the suggested solutions and incorporating additional features,
the model's accuracy and generalizability could be further enhanced. The
study also touched on tuning methodology in Weka, highlighting the
importance of adjusting parameters for optimal performance. Several
screenshots were used, illustrating the error analysis provided helping in
building upon the analysis in detail.

My insights: I feel like,
-It would be interesting to explore the impact of specific features on the
model's predictions.
-Comparing the performance of different machine learning algorithms could
provide valuable insights.
-Investigating the reasons behind misclassifications could lead to further
model refinement.
_____________________________________________________________________________
_
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